NPTEL: Automation & Controls Module: 2 Hydraulic and Pneumatic Controls

- **Q.1.** What is the working principle of fluid power transmission?
- **Ans:** Fluid power transmission works under the principle statement of Pascal's law which states that- "Pressure applied to a confined fluid is transmitted undiminished in all directions and acts with equal force on equal areas and at right angles to a container's walls."
- **Q.2.** How many types of valves are used in hydraulic/pneumatic systems? What are their symbols?
- Ans: Following are the types and symbols of valves used in Hydraulic/Pneumatic systems

1. Directional Control Valves

Directional control valve (2 ports / 2 positions)

- -Normally closed directional control valve with 2 ports and 2 finite positions.
 - -Normally open directional control valve with 2 ports and 2 finite positions.

Directional control valve (3 ports / 2 positions)

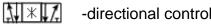
-Normally closed directional control valve with 3 ports and 2 finite positions.

-Normally open directional control valve with 3 ports and 2 finite positions.

Directional control valve (4 ports / 2 positions)

-directional control valve with 4 ports and 2 finite positions

Directional control valve (4 ports / 3 positions)


-directional control valve with 4 ports and 3 finite positions *-(center position can have various flow paths)

Directional control valve (5 ports / 2 positions) Normally a pneumatic valve

-directional control valve with 5 ports and 2 finite positions

Directional control valve (5 ports / 3 positions) Normally a pneumatic valve

-directional control valve with 5 ports and 3 finite positions

2. Check valves, Shuttle valves, Rapid Exhaust valves

-check valve -free flow one direction, blocked flow in other direction

-pilot operated check valve, pilot to close

-pilot operated check valve, pilot to open

Shuttle valve

- -to isolate one part of a system from an alternate part of circuit.

Rapid exhaust valve/Pneumatic

-installed close to an actuator for rapid movement of the actuator.

3. Pressure Control Valves

Pressure Relief Valve(safety valve) normally closed

- Line pressure is limited to the setting of the valve, secondary part is directed to tank.

Proportional Pressure Relief

- Line pressure is limited to and proportional to an electronic signal

Sequence Valve

- When the line pressure reaches the setting of the valve, valve opens permitting flow to the secondary port. The pilot must be externally drained to tank.

Pressure Reducing

- pressure downstream of valve is limited to the setting of the valve

4. Flow Control Valves

Throttle valve

	1	
_	不	

-adjustable output flow

Flow Control valve

*	-with fixed output (variations in inlet pressure do not affect rate of flow)
	-with fixed output and relief port to reservoir with relief for excess flow (variations in inlet pressure do not affect rate of flow)
-	-with variable output
~~	-fixed orifice
t 🐇 I	-metered flow toward right free flow to left
_* †	-pressure compensated flow control fixed output flow regardless of load
<u>-*†</u> !	-pressure and temperature compensated
₩.	-with variable output and relief port to reservoir

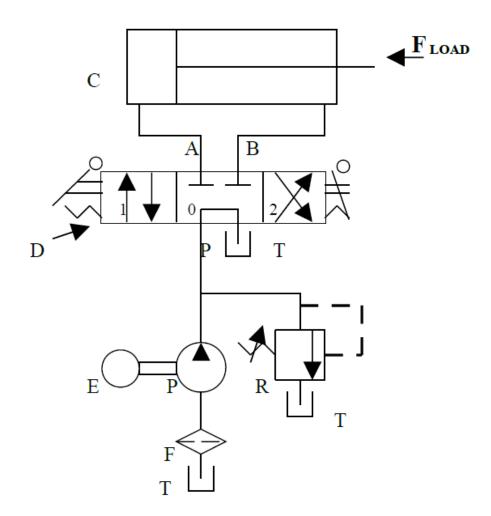
Flow dividing valve

-flow is divided equally to two outputs.

Shut-Off Valve

$$\rightarrow \rightarrow \rightarrow$$

-Simplified symbol


- **Q.3.** What is the function of hydraulic actuators in the automated system? How many types of actuators are used?
- **Ans:** A hydraulic actuator receives pressure energy and converts it to mechanical force and motion. An actuator can be linear or rotary. A linear actuator gives force and motion outputs in a straight line. It is more commonly called a cylinder but is also referred to as a ram, reciprocating motor, or linear motor. A rotary actuator produces torque and rotating motion. It is more commonly called a hydraulic motor or motor.

Normally two types of hydraulic actuators are used which are: Reciprocating actuators: Single acting cylinders, Double acting cylinders. Rotary actuators: Hydraulic motors.

- **Q.4.** What oils are normally used for hydraulic operations? What are the desired properties of such oils?
- **Ans:** Most hydraulic systems will operate satisfactorily using a variety of fluids. These include multi-grade engine oil, automatic transmission fluid and more conventional anti-wear hydraulic oil. But it is not possible to make one definitive recommendation about the type of fluid which is best for a particular application and may cover all types of hydraulic equipment in all applications. A satisfactory liquid for a hydraulic system must be thick enough to give a good seal at pumps, motors, valves.
- **Q.5.** What are the differences between positive displacement pump and non-positive displacement pump?
- **Ans:** Following points illustrates the differences between positive displacement pumps and non-positive displacement pumps:
 - Non-positive displacement pumps provide a smooth, continuous flow; positive displacement pumps have a pulse with each stroke or each time a pumping chamber opens to an outlet port.
 - Pressure can reduce in a non-positive pump's delivery. High outlet pressure can stop any output; the liquid simply re-circulates inside the pump. In a positive displacement pump, pressure affects the output only to the extent that it increases internal leakage.
 - Non-positive displacement pumps, with the inlets and outlets connected hydraulically cannot create a vacuum sufficient for self-priming; they must be started with the inlet line full of liquid and free of air. Positive-displacement pumps often are self-priming when started properly.
- **Q.6.** What is the criterion for pump selection?
- **Ans:** Following are the pump selection guidelines:
 - Select the actuator (Hydraulic cylinder or motor) based on load.
 - Determine flow rate requirements.
 - Determine pump speed and select the prime mover.
 - Select pump type based on application.
 - Select System pressure.
 - Select reservoir and other components.
 - Calculate overall cost of the system.
 - Consider factors as noise level, horsepower loss, need of heat exchanger, schedule maintenance.

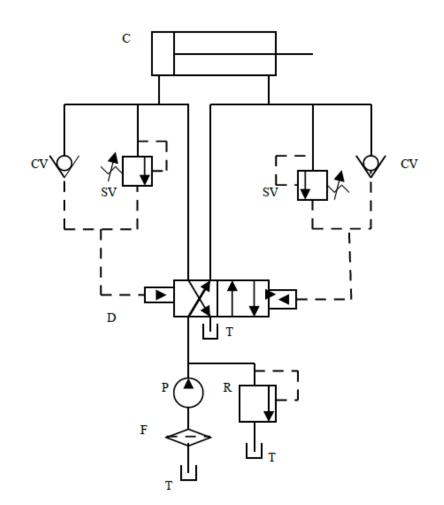
Q.7. What is pressure head? How losses in pressure head occur and how are they measured?

- **Q.8.** Draw a hydraulic circuit to display the controlling of a double acting cylinder.
- Ans: Control of Double acting hydraulic cylinder.
 - C = Double acting cylinder
 - P = Pump
 - E = Electric Motor
 - T = Tank
 - F = Filter
 - R = Relief Valve
 - D =3-position, 4 way, manually operated and Spring Centered DCV

- **Q.9.** A double acting cylinder is hooked up to reciprocate. The relief valve setting is 70 bars. The piston area is 0.016 m² and the rod area is 0.0045 m². If the pump flow is 0.0013m³/s, find the cylinder speed and load- carrying capacity for the following:
 - a. Extending stroke
 - b. Retracting stroke.

Ans: Solution:

Relief valve pressure setting, p = 70 bars = 70 * 10^5 N /m²


Piston area, A $_{p}$ = 0.016 m²

Rod area, A $_{r} = 0.0045 \text{ m}^{2}$

Pump flow, Q $_{p} = 0.0013 \text{ m}^{3}/\text{s}$

- a. Extending Stroke:
 - Cylinder speed, V_{p ext} = Q_p / AP = 0.0013 / 0.016 = 0.0813 m / s
 Load carrying capacity, F_{load} = p * AP = 70 * 105 * 0.016 = 112000 N = 112kN
- b. Retracting Stroke:

Q.10. Draw a hydraulic circuit for automatic cylinder reciprocating system using DCVs.

Ans:

Automatic Cylinder Reciprocating System using Sequence valves

C = Double acting cylinder

P = Pump

SV = Sequence Valve

CV = Check Valve; R = Relief Valve

T = Tank; F = Filter

D = 2-position, 4 way, pilot operated DCV